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ABSTRACT

Although there are a large number of known exoplanets, there is little data on their global atmospheric properties.
Phase-resolved spectroscopy of transiting planets – continuous spectroscopic observation of planets during their
full orbits – probes varied depths and longitudes in the atmospheres thus measuring their three-dimensional
thermal and chemical structure and contributing to our understanding of their global circulation. Planets with
characteristics suitable for atmospheric characterization have orbits of several days, so phase curve observations
are highly resource intensive, especially for shared use facilities. The Exoplanet Climate Infrared TElescope
(EXCITE) is a balloon-borne near-infrared spectrometer designed to observe from 1 to 5 µm to perform phase-
resolved spectroscopy of hot Jupiters. Flying from a long duration balloon (LDB) platform, EXCITE will have
the stability to continuously stare at targets for days at a time and the sensitivity to produce data of the quality
and quantity needed to significantly advance our understanding of exoplanet atmospheres. We describe the
EXCITE design and show results of analytic and numerical calculations of the instrument sensitivity. We show
that an instrument like EXCITE will produce a wealth of quality data, both complementing and serving as a
critical bridge between current and future space-based near infrared spectroscopic instruments.
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1. INTRODUCTION

The Exoplanet Climate Infrared Telescope (EXCITE) is a balloon-borne spectrograph designed to perform
phase-resolved spectroscopy of transiting hot Jupiters. EXCITE will measure spectroscopic phase curves of
bright, short-period extrasolar giant planets (EGPs, or “hot Jupiters”) near the peak of their spectral energy
distributions (SEDs). The resulting phase-resolved spectroscopy will be used to map the temperature profile
and chemical composition of planets as a function of planetary longitude. Combined with state-of-the-art three-
dimensional general circulation models (GCMs), these data will be used to study the atmospheric dynamics and
chemistry in these strongly-irradiated planets.1

We still know very little about exoplanet atmospheric composition, thermal structure, and dynamics.2 Efforts
to characterize exoplanet atmospheres have largely relied on space-based observatories such as the Spitzer Space
Telescope and Hubble Space Telescope (HST), to remove the influence of Earth’s atmosphere and achieve the
highest levels of spectrophotometric precision. With moderate resolving power (R ∼ 50) and continuous spec-
troscopic coverage across wavelengths from 1–4 µm, EXCITE will make observations that are inaccessible from
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existing observatories, helping to bridge the gap between current (e.g., HST) and future (e.g., JWST, WFIRST)
space-based near infrared (NIR) spectroscopic observatories. EXCITE will operate from a high-altitude (∼ 40
km) long duration balloon (LDB) platform, observing from a near-space environment above > 99% of the Earth’s
atmosphere. At these altitudes the Earth’s atmosphere is stable and nearly transparent. This reduces the im-
pact of systematic effects due to atmospheric variations that can limit lower-altitude experiments (see Figure 1).
EXCITE’s 0.5 m optical telescope assembly (OTA) is based on the successful Balloon-borne Imaging Testbed
(BIT) platform.3 The pointing accuracy and stability of the BIT platform, combined with the circumpolar orbit
of an Antartic LDB flight, allows EXCITE to continuously stare at targets through the duration of their orbits
(up to several days). Such observations are resource-intensive for shared-use facilities, making them well suited
for a purpose-built platform.
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Figure 1. Atmospheric transmission for EXCITE, SOFIA and Mauna Kea (MK). Wavelengths of key molecular features
for exoplanet atmosphere studies are indicated. Dotted lines are arbitrarily-scaled black body spectra at 1,800K and
2,800 K, i.e., typical dayside temperatures for our targets. The advantage of measuring exoplanet spectra from above the
Earths atmosphere is clear.

2. INSTRUMENT

EXCITE uses a Ritchey-Chrétien telescope, nominally the same as the one used successfully in the test flight of the
Balloon-borne Imaging Testbed (BIT).3 Since EXCITE, unlike BIT, is not an imaging instrument, distortion-
free images across the focal plane are not required, so image corrector lenses are not needed. Compared to
aplanatic Gregorian telescopes, Ritchey-Chrétien configurations are more compact and use smaller secondary
mirrors, allowing more light to be collected for a given primary mirror size, better suiting the constraints of a
balloon platform. The telescope structure is made from materials with similar coefficients of thermal expansion
to ensure optical stability.

The basic optical layout of the spectrometer is shown in Figure 2. All the optics inside the cryostat are
cooled to 77 K. After entering the cryostat, the light from the telescope is divided into two bands (1–2 µm and
2–5 µm) using a dichroic. The light in each channel is focused on bandpass-optimized slits designed to limit
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the sky and instrument thermal background levels expected in a LDB flight to well below the expected source
levels. After the slits, each beam passes through an Offner relay, with a prism positioned after the first concave
mirror. In channel 1, the prism is made of Schott P-SF68 glass, which is a dense flint glass with a high index of
refraction and high transmissivity (T ≥ 95%) in the 1–2 µm band. Dense flint glasses are commonly used for NIR
instrumentation and are suitable for cryogenic applications.4 In channel 2, the prism is made of sapphire, which
performs well in cryogenic environments and has a transmissivity T > 85% from 1–4 µm. The transmissivity of
sapphire is reduced at wavelengths longer than 4 µm, but there the EXCITE sensitivity is already limited by sky
and telescope emission. The spectrometer configuration allows Nyquist sampling of the point spread function
(PSF). Background spectra (within the slits) are obtained along the slit direction. overall optical efficiency is
greater than 60%. With near-diffraction-limited performance over the bandpass, the mean spectral resolution
(Rayleigh criteria) is λ/∆λ = 50. The focal plane detector is a Teledyne HAWAII-1RG (H1RG). The detector is
maintained at an operating temperature just above 77 K, where the median dark current level is ≤ 0.5 e−/s per
pixel.5 An internal calibrator similar to the one that will be used for ARIEL is used to monitor the performance
of the detector array over time, correcting for detector system gain variations.6,7

Figure 2. The optical layout of the spectrometer in the cryostat.

The EXCITE gondola and pointing system are based on the BIT platform, which was successfully demon-
strated in a 2015 flight and is scheduled for a ultra long duration balloon (ULDB) flight from New Zealand in
2018.3 From the 8 hour flight, sub-arcsecond pointing stabilization of the telescope frame was demonstrated over
tracking periods of more than an hour at a time. During a given tracking period, the telescope was stabilized to
approximately 0.05” rms.3 The EXCITE gondola (Figure 3) is designed to hold the 0.5 m diameter telescope
in three axes with a peak-to-peak accuracy of better than 2 arcsec.

3. SENSITIVITY

Sky and telescope emission begin to dominate at λ > 4µm, so we take 4 µm as our longest science wavelength.
We summarize the results of a radiometric sensitivity calculation in Figure 4. The figure shows the expected
sensitivity per spectral bin in one hour of integration for the sources at the faint and bright ends of typical
sources. These results assume uncorrelated noise from instrumental emission, the Earth’s atmosphere, the target
star, and detector dark current and readout.

4. CORRELATED SYSTEMATIC EFFECTS

To account for other noise sources, we simulated EXCITE observations of eclipses and phase curves. The
simulator used for EXCITE is based on the time-domain simulator ExoSim.8 The simulations account for
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Figure 3. The EXCITE instrument. The telescope is a Ritchey-Chrétien design with a 0.5 m diameter primary mirror,
which is pointed to an accuracy of 2 arcsec in all three axes. A fine guidance tip/tilt mirror provides the required 0.1
arcsec pointing stability. The telescope is surrounded by a temperature stabilized shroud. BIT successfully used such a
shroud stabilized to ±100 mK. The temperature is controlled by electrical heater pads.
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Figure 4. Left: Instrument sensitivity per spectral bin at R = 50 for the faintest and brightest sources in one hour of
integration. Because the PSF is Nyquist sampled, we are free to re-bin both spectrally and temporally to achieve better
sensitivity. Right: Results of the EXCITE end-to-end simulation for an observation of the phase curve of WASP-18b.
We show measurement noise across channel 2 as a function of integration time (channel 1, with higher SNR, is even
more immune to correlated effects). Correlated effects do not contribute to the noise for measurements shorter than ∼ 90
minutes.

uncorrelated shot noise and realistic time- and wavelength-correlated detector variation, pointing jitter, balloon
altitude variations, and long-term instrumental drifts. In the following we discuss each of these sources, their
impact on EXCITE’s photometric stability and the mitigation strategies we will implement at the instrument
level and in data analysis. The results of the simulation are shown in Figure 4, and indicate that the instrument
is photon-noise limited for all reasonable integration times.

4.1 Pointing jitter

Pointing jitter is a source of photometric uncertainty arising from the motion of the sampled spectrum in both the
spatial and spectral directions on the focal plane. Simulations of pointing jitter of 0.6 pixels RMS (significantly
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larger than the performance of the fine pointing control) show that post-processing jitter–induced systematics
in the cross-dispersion direction are at least an order of magnitude below the photon noise. This remains true
provided that i) the instrument monochromatic PSF is sampled by at least 2 detector pixels per FWHM (i.e.,
Nyquist sampled) and ii) the array can be flat-fielded to ∼0.5%. Jitter–induced photometric systematics along
the dispersion direction can be removed efficiently in data analysis using a combination of information from the
attitude control system, the high SNR sampled stellar spectrum and decorrelation techniques, information about
pixel wavelength response from pre-flight characterization, and in-flight calibration from the internal calibrator.7

Nyquist sampling the PSF avoids the most important correlated systematic effects in Spitzer9–11 arising from
intra-pixel sensitivity variations. Moreover, the EXCITE detectors are similar to that of HST/WFC3, which has
negligible intra-pixel systematics.12

Using the calibration source EXCITE can achieve flat field accuracy of 0.5% – required to decorrelate jitter
noise. Additional verification is achieved by observing sky background emission during ascent and at float and
the internal calibrator at float. The Spitzer mission was able to achieve flat field accuracy of ∼ 0.1%.13

The slits widths are dimensioned to be the same size as the Airy disk at the red-end of each channel. The
largest slit loss is 0.5% at 2 µm, assuming a worst case positioning of the PSF onto the slit to within 1/10th
of the FWHM at this wavelength. Channel 2 monochromatic PSFs are larger, and the effect will be smaller.
The slit design employed by EXCITE is similar to that of the ARIEL IR spectrometer, where slit losses were
considered and the same conclusion was reached.7

4.2 Atmospheric variations

The Earth’s atmosphere is a non-negligible diffuse background that changes as a function of elevation, altitude
and Sun position. Similar variations occur in transmission, though at levels which are at all times subdominant
to photon noise. This effect was modeled using MODTRAN. We account for two separate variations. On short
timescales, the balloon’s altitude oscillates with an amplitude of ∼ 50 m and a period of ∼ 5 minutes, resulting
in a ∼ 1.5% modulation of atmospheric emission across the EXCITE band. On longer timescales, the balloon
altitude oscillates with an amplitude of ∼ 1 km and a period of ∼ 1 day, modulating atmospheric emission
by ∼ 30%. Long-period elevation variations as a target is tracked also modulate sky emission, but at smaller
levels than altitude variations. Integrating for longer than ∼ 5 minutes removes short-period variations from the
simulated time stream. This strategy is consistent with our observing plan, where the shortest observations are
∼ 1 hour long. Diurnal variations contribute to the noise at a similar level to the uncorrelated sources; however
this signal can be monitored and corrected by sampling detector pixels in the cross-dispersion direction.

4.3 Instrumental drifts

We simulated time variation of emission from the warm optical components by allowing the temperature of the
warm optics to drift by a few degrees on ∼ 1 day timescales. Noise due to temperature drifts is monitored and
corrected in the same way as atmospheric emission.

Detector responsivity time variations are negligible (< 50 ppm) on few hour timescales.14,15 Possible longer
timescale drifts will be corrected using a combination of stable G-type star observations and the calibrator.
Detector latencies or persistence are well understood. It has been shown (e.g., the many studies involving WFC3
on HST) how these can be effectively dealt with using data analysis techniques (e.g.,16 and references therein)
and allowing sufficient settling time, which is built into our observing strategy. The detector is operated in a
linear regime, and residual non-linear effects are negligible. A 5% divergence from linear response occurs at full
well depth,17 and EXCITE will operate at < 75% well depth, similar to observations with HST/WFC3,18 which
employs the same detector technology.

4.4 Stellar variability

Stellar variability of the EXCITE targets at optical wavelengths due to star spots and stellar rotation has been
characterized using the discovery light curves and is generally found to be < 0.1%. Where variability is seen, the
amplitudes at optical wavelengths are ∼ 1% and the rotation periods of the stars are found to be 10–20 days.
Variability in the 1–5 µm range is 3–4 × less than at optical wavelengths for these solar-like stars19–21 and it is
expected to have limited or negligible contribution to the noise budget in the IR.22,23 In general, the infrared
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variation is strongly correlated with the optical variation so monitoring of the star at optical wavelengths can
be used to remove this noise source from the EXCITE spectroscopic data, as been demonstrated using Spitzer
data.24

5. CONCLUSION

A purpose-built instrument like EXCITE is best suited for resource-intensive phase curve measurements. Space
missions like HST and JWST are multi-purpose. JWST will measure some phase curves, but given time allocation
priorities it is unlikely to carry out as comprehensive a program as EXCITE. Not until a decade from now will
ARIEL carry out such observations.

Unlike EXCITE, neither HST nor JWST can measure spectra of the brightest phase curve targets over the
1–4 µm band simultaneously. The HST NICMOS instrument has been used to measure exoplanet spectra up
to 2.5 µm,25–27 but it is not currently operational. The replacement for NICMOS, the WFC3, can observe
only up to 1.7 µm.28 JWST can access the entire 1–4 µm band with the NIRSpec prism, but only for targets
with a J magnitude fainter than ≈ 10,29 thus excluding the targets best suited for phase-resolved spectroscopy.
EXCITE will cover the entire 1–4 µm band, obtaining the signatures of water and carbon in a single orbital
period observation.

With sensitivity comparable to that obtained by space-based observatories and sufficient bandwidth to mea-
sure key molecular features in the NIR, EXCITE will fill a key near-term need as a dedicated platform for
studying exoplanet atmospheric physics.

REFERENCES

[1] Parmentier, V. and Crossfield, I. J. M., “Exoplanet Phase Curves: Observations and Theory,” Handbook
of Exoplanets, Edited by Hans J. Deeg and Juan Antonio Belmonte. Springer Living Reference Work , 116
(2017).

[2] Burrows, A. S., “Spectra as windows into exoplanet atmospheres,” Proceedings of the National Academy of
Science 111, 12601–12609 (Sept. 2014).

[3] Romualdez, L. J., Clark, P., Damaren, C. J., Galloway, M. N., Hartley, J. W., Li, L., Massey, R. J., and
Netterfield, C. B., “Precise Pointing and Stabilization Performance for the Balloon-borne Imaging Testbed
(BIT): 2015 Test Flight,” ArXiv e-prints (Mar. 2016).

[4] Oliva, E. and Gennari, S., “Achromatic lens systems for near infrared instruments. II. Performances and
limitations of standard Flint glasses,” Astron. & Astrophys. Suppl. 128, 599–603 (Mar. 1998).

[5] Chuh, T., Loose, M., Gulbransen, D. J., Anglin, S. W., Beletic, J., Piquette, E. C., and Garnett, J. D.,
“Astronomy FPA advancements at Rockwell Scientific,” Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series 6265, 2 (June 2006).

[6] EChO YellowBook, http://sci.esa.int/echo/53446-echo-yellow-book/.

[7] Ariel YellowBook, http://sci.esa.int/cosmic-vision/59109-ariel-assessment-study-report-yellow-book.

[8] Sarkar, S., Papageorgiou, A., and Pascale, E., “Exploring the potential of the ExoSim simulator for transit
spectroscopy noise estimation,” Proc. SPIE 9904, 99043R (July 2016).

[9] Ingalls, J. G., Krick, J. E., Carey, S. J., Laine, S., Surace, J. A., Glaccum, W. J., Grillmair, C. C., and
Lowrance, P. J., “Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera
(IRAC),” Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8442, 1 (Sept.
2012).

[10] Deming, D., Knutson, H., Kammer, J., Fulton, B. J., Ingalls, J., Carey, S., Burrows, A., Fortney, J. J.,
Todorov, K., Agol, E., Cowan, N., Desert, J.-M., Fraine, J., Langton, J., Morley, C., and Showman, A. P.,
“Spitzer Secondary Eclipses of the Dense, Modestly-irradiated, Giant Exoplanet HAT-P-20b Using Pixel-
Level Decorrelation,” ArXiv e-prints (Nov. 2014).

[11] Pont, F., Zucker, S., and Queloz, D., “The effect of red noise on planetary transit detection,” Mon. Not. R.
Astron. Soc. 373, 231–242 (Nov. 2006).

[12] Dressel, L., “Wide Field Camera 3 Instrument Handbook, Version 9.0 (Baltimore: STScI),” Handbook of
Exoplanets, Edited by Hans J. Deeg and Juan Antonio Belmonte. Springer Living Reference Work (2017).

Proc. of SPIE Vol. 10702  107025G-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[13] Spitzer Heritage Archive Documentation, IRAC Instrument and Instrument Support Teams, IRAC Instru-
ment Handbook, 2.1 ed. (Feb. 2015).

[14] Clanton, C., Beichman, C., Vasisht, G., Smith, R., and Gaudi, B. S., “Precision Near-Infrared Photometry
for Exoplanet Transit Observations. I. Ensemble Spot Photometry for an All-Sky Survey,” Pub. Astron.
Soc. Pac. 124, 700 (July 2012).

[15] Bezawada, N. and Ives, D., “High-speed multiple window readout of Hawaii-1RG detector for a radial
velocity experiment,” Proc. SPIE 6276, 62760O (June 2006).

[16] Tsiaras, A., Waldmann, I. P., Rocchetto, M., Varley, R., Morello, G., Damiano, M., and Tinetti, G., “A
New Approach to Analyzing HST Spatial Scans: The Transmission Spectrum of HD 209458 b,” ApJ 832,
202 (Dec. 2016).

[17] Blank, R., Anglin, S., Beletic, J. W., Baia, Y., Buck, S., Bhargava, S., Chen, J., Cooper, D., Eads, M.,
Farris, M., Hall, D. N. B., Hodapp, K. W., Lavelle, W., Loose, M., Luppino, G., Piquette, E., Ricardo, R.,
Sprafke, T., Starr, B., Xu, M., and Zandian, M., “The HxRG Family of High Performance Image Sensors
for Astronomy,” in [Solar Polarization 6 ], Kuhn, J. R., Harrington, D. M., Lin, H., Berdyugina, S. V.,
Trujillo-Bueno, J., Keil, S. L., and Rimmele, T., eds., Astronomical Society of the Pacific Conference Series
437, 383 (Apr. 2011).

[18] Berta, Z. K., Charbonneau, D., Désert, J.-M., Miller-Ricci Kempton, E., McCullough, P. R., Burke, C. J.,
Fortney, J. J., Irwin, J., Nutzman, P., and Homeier, D., “The Flat Transmission Spectrum of the Super-
Earth GJ1214b from Wide Field Camera 3 on the Hubble Space Telescope,” ApJ 747, 35 (Mar. 2012).

[19] Eddy, J. A., “The Sun, the Earth and Near-Earth Space: A Guide to the Sun-Earth System,” ISBN
978-0-16-08308-8 , 301 (2009).

[20] Knutson, H. A., Charbonneau, D., Allen, L. E., Fortney, J. J., Agol, E., Cowan, N. B., Showman, A. P.,
Cooper, C. S., and Megeath, S. T., “A map of the day-night contrast of the extrasolar planet HD 189733b,”
Nature 447, 183–186 (May 2007).

[21] Berta, Z. K., Charbonneau, D., Bean, J., Irwin, J., Burke, C. J., Désert, J.-M., Nutzman, P., and Falco,
E. E., “The GJ1214 Super-Earth System: Stellar Variability, New Transits, and a Search for Additional
Planets,” ApJ 736, 12 (July 2011).

[22] Kreidberg, L., Line, M. R., Bean, J. L., Stevenson, K. B., Désert, J.-M., Madhusudhan, N., Fortney, J. J.,
Barstow, J. K., Henry, G. W., Williamson, M. H., and Showman, A. P., “A Detection of Water in the
Transmission Spectrum of the Hot Jupiter WASP-12b and Implications for Its Atmospheric Composition,”
ApJ 814, 66 (Nov. 2015).

[23] Zellem, R. T., Swain, M. R., Roudier, G., Shkolnik, E. L., Creech-Eakman, M. J., Ciardi, D. R., Line,
M. R., Iyer, A. R., Bryden, G., Llama, J., and Fahy, K. A., “Forecasting the Impact of Stellar Activity on
Transiting Exoplanet Spectra,” ApJ 844, 27 (July 2017).

[24] Knutson, H. A., Lewis, N., Fortney, J. J., Burrows, A., Showman, A. P., Cowan, N. B., Agol, E., Aigrain,
S., Charbonneau, D., Deming, D., Désert, J.-M., Henry, G. W., Langton, J., and Laughlin, G., “3.6 and
4.5 µm Phase Curves and Evidence for Non-equilibrium Chemistry in the Atmosphere of Extrasolar Planet
HD 189733b,” ApJ 754, 22 (July 2012).

[25] Crouzet, N., McCullough, P. R., Burke, C., and Long, D., “Transmission Spectroscopy of Exoplanet XO-2b
Observed with Hubble Space Telescope NICMOS,” ApJ 761, 7 (Dec. 2012).

[26] de Kok, R. J., Brogi, M., Snellen, I. A. G., Birkby, J., Albrecht, S., and de Mooij, E. J. W., “Detection
of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b,” Astron. &
Astrophys. 554, A82 (June 2013).

[27] Swain, M. R., Line, M. R., and Deroo, P., “On the Detection of Molecules in the Atmosphere of HD 189733b
Using HST NICMOS Transmission Spectroscopy,” ApJ 784, 133 (Apr. 2014).

[28] Stevenson, K. B., Désert, J.-M., Line, M. R., Bean, J. L., Fortney, J. J., Showman, A. P., Kataria, T.,
Kreidberg, L., McCullough, P. R., Henry, G. W., Charbonneau, D., Burrows, A., Seager, S., Madhusudhan,
N., Williamson, M. H., and Homeier, D., “Thermal structure of an exoplanet atmosphere from phase-resolved
emission spectroscopy,” Science 346, 838–841 (Nov. 2014).

[29] STScI, “Space Telescope Science Institute, User Documentation for Cycle 1: Near Infrared Spectrograph
Instrument (NIRSpec).” JWST User Documentation [Updated 12 February 2018] Baltimore, MD https:

//jwst-docs.stsci.edu.

Proc. of SPIE Vol. 10702  107025G-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


